Analysis of Variation in On-Chip Waveguide
نویسندگان
چکیده
Recently, optical interconnect has emerged as a possible alternative to electrical interconnect at chip-to-chip and on-chip length scales because of its potential to overcome power, delay, and bandwidth limitations of traditional electrical interconnect. This thesis examines the issues of variation involved in the implementation of a robust on-chip optical signal distribution network. First, the variation within the on-chip waveguide network is analyzed in terms of susceptibility to lithographic uncertainties and refractive index variations. Then, the robustness of an ultrashort pulse-based receiver circuit architecture is analyzed. Some variation sources considered are optical input power variation, load capacitance variation, parasitic capacitive coupling, and power supply noise. Simulation results show that, for both the passive waveguide network and the optical receiver circuit, variation can result in clock skew and jitter, which limit the frequencies at which the distribution network can operate. The impact of technology scaling on the optical receiver circuit architecture is assessed with respect to variation. The robustness of the optical network is compared with that of an all-electrical signal distribution network. Results indicate, for the optical signal distribution network, that a trade-off exists between power consumption and robustness towards most sources of variation. In addition, the ultrashort pulse-based receiver circuit design demonstrates robustness towards many variation sources in the presence of technology scaling. The existence of variation in reasonable amounts will not obstruct the functionality of the receiver circuit. However, additional measures must be taken to minimize power supply variation and parasitic capacitive coupling, which will have a greater impact on robustness in future technology nodes. Thesis Supervisor: Duane S. Boning Title: Professor of Electrical Engineering and Computer Science
منابع مشابه
Chip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”
The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملA Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey
Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion lo...
متن کاملPropose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure
This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014